Original Article

Cayley Graph on Nilpotent Groups with and without Hamilton Path

Mohammad Badrul Alam Miah¹, Afroza Akter²

¹Associate Professor, Department of ICT, Mawlana Bhashani Science & Technology University Tangail-1902, Dhaka, Bangladesh

² Student Department of ICT, Mawlana Bhashani Science & Technology University Tangail-1902, Dhaka, Bangladesh

Abstract - A Cayley graph with a hamilton path as finite when every vertices are connected and do not contain a Hamilton path when it is infinite has been constructed. Cayley graph must be directed and must contain nilpotent, commutator subgraph.

Keywords - *Cayley graph, hamilton path, nilpotent group, commutator subgraph.*

I. INTRODUCTION

Let *G* be a group. Where any subset of *S* of the finite group, the Cayley digraph is the directed graph whose vertices are the elements of *G* and with a directed edge $g \rightarrow gs$ for every $g \rightarrow G$ and $s \notin S$, denoted $Cay^{\rightarrow}(G; S)$ [1].

Every connected Cayley graph has a hamilton path if G has a prime-power order; otherwise, not [3] as this is not executable for many directed edges. However, only in infinite groups that are not solvable [4].

Proposition 1.1 In many infinite groups, G, where every connected Cayley graph on G has a Hamilton cycle and G is not solvable [4].

Here, alternating group A_5 (order 60) is a simple nonabelian group.

Proposition 1.2 $P \equiv 1 \pmod{30}$ where P = prime *number*, then every connected Cayley graph on the direct product $A_5 \times \mathbb{Z}_p$ has a hamilton cycle [4].

Remark. The assumption $G = P \times A$ in Proposition 1.2 is equivalent to assuming that G is nilpotent and the commutator subgroup of G has a prime-power order [1].

Proposition 1.3 On any nilpotent group containing connected Cayley digraph of out valence 2 has a hamilton path [1].

Corollary 1.3 On any nilpotent group containing connected Cayley digraph of out valence ≤ 4 has a hamilton path [1].

Remark. If $S = \{a, b\}$ is a 2-element generating set of a group *G* where |a| = 2, |b| = 3, $|G| > 9 |ab^2|$, then $Cay^{\rightarrow}(G;a,b)$ does not have a hamilton path [1].

Proposition 1.4 Let *G* be an abelian group and let $a,b,k \in G$ such that *k* be an element of order 2. G is cyclic if the Cayley digraph $\neg(G; a,b, b+k)$ is connected but does not have a hamilton cycle [3].

II. NOTATION

Notation 2.1 Let G be a group and S be a subset of G.

- *Cay*(*G*:*S*) denotes the Cayley graph of G
- concerning S, where the vertices are the elements of G and an edge joining g to gs for every $g \rightarrow G$ and $s \in S$.
- G' = [G, G] denotes the commutator subgraph of *G*.
- $S^T = \{ S^T \mid s \in, S \}$ for any $r \in \mathbb{Z}$. $S^{\pm 1} = S \cup S^{-1}$
- # S is the cardinality of S

Notation 2.2

- *G* is a nilpotent finite group
- *N* is a normal cyclic subgroup of *G* that contains *G*
- $g \rightarrow g^{-}$ is a homomorphism from *G* to *G*/*N* = *G*.'

 $S = \{ \sigma_1, \sigma_2, \dots, \sigma_l \}$ is a subset of *G* Where $l = \neq S = \neq \overline{S} \ge 2$ [2].

III. PROOF OF THE PROPOSITIONS

Proof of proposition 1.2 Let $Cay^{\rightarrow}(G; a,b)$ be a connected where $G = P \times A$ and if $H = (S^{-1}S)$ be the arc-forcing subgraph assuming *S* is minimal.

Case 1. $H \neq G$ has been assumed on |G| where on the Cayley graph has a Hamilton path H in $Cay^{\rightarrow}(G;S)$.

Case 2. H = G, $G = H = (a^{-1}S - \{e\})$ where the subset of S_0 of S, then S is minimal and such that $(S_0^{-1}) = P$.Since $G/P^{\cong}A$ is a abelian this implies $[G, G] \subseteq$

(S_0). If $N \neq G$, assume [G, G] is non-trivial and otherwise provides a hamilton path [1]. Let (S_i)^{*n*}_{*i*=1} be a Hamilton path in $Cay^{\rightarrow}(N; S_0)$.

Proof of proposition 1.3 Let $\{a,b\}$ be a 2-element generating set for G. Then the arc-forcing subgroup $H = (a^{-1}b)$ is cyclic, so it is abelian and provides a hamilton path in $Cay^{\rightarrow}(G;a,b)[1]$

Proof of Corollary 1.3 Let *Cay* (*G*; *S*) is connected with valence ≤ 4 when *G* is nilpotent [1]. *S*₂ has a set of elements of order 2 in *S* and *P* be the 2-subgraph of $G = P \times K$, where |K| is odd.

Requiring $\neq S - \neq S_2 \leq I$ since $S_2 \subseteq P$ as $K \cong G/P$ is cyclic. Therefore proposition 1.2 applies $\neq S - \neq S_2 \leq 2$ then $4 \geq valence \text{ of } Cay(G; S) = \neq (S \cup S^{-1}) = 2 \ (\neq S - \neq S_2) + \neq S_2 \geq 2 \ (\neq S - \neq S_2) \geq 2.2$. So $\neq S = 2 \ (and S_2 = \emptyset)$

Proof of proposition 1.4 By assuming G is not cyclic, and it has been shown that the Cayley digraph has a Hamilton cycle if it is connected.

Constructing a subdigraph H_0 of G where G is in the place of \mathbb{Z}_{2k} with |G| in the place of 2k and with |an| in the place of d (when $k \notin (a)$ and $k \in (a)$).

Every vertex of H_0 has both invalence 1 and outvalence 1. $(a-b) \neq G$ as G is not cyclic

implies that (a-b) has even order. So, a = a'+k' and b=b'+k' for $a',b' \in (a-b)$ and $k',k'' \in (k)$ as can be shown that k' = k''[4].

IV. ACKNOWLEDGEMENT

Thanks to our honorable teachers for their contribution. This paper is a modification of the following four papers, which are cited.

REFERENCES

- Morris, D. W. (2011). 2-generated Cayley digraphs on nilpotent groups have hamiltonian paths. ArXiv Preprint ArXiv:1103.5293.
- [2] Ghaderpour, E., & Morris, D. W. (2011). Cayley graphs on nilpotent groups with cyclic commutator subgroup are hamiltonian. ArXiv Preprint ArXiv:1111.6216.
- [3] Morris, D. W. (2013). On Cayley digraphs that do not have hamiltonian paths. International Journal of Combinatorics, 2013.
- [4] Morris, D. W. (2015). Infinitely many nonsolvable groups whose Cayley graphs are hamiltonian. ArXiv Preprint ArXiv:1507.04973.